Unsupervised Object Pose Classification from Short Video Sequences
نویسندگان
چکیده
We address the problem of recognizing the pose of an object category from video sequences capturing the object under small camera movements. This scenario is relevant in applications such as robotic object manipulation or autonomous navigation. We introduce a new algorithm where wemodel an object category as a collection of non parametric probability densities capturing appearance and geometrical variability within a small area of the viewing sphere for different object instances. By regarding the set of frames of the video as realizations of such probability densities, we cast the problem of object pose classification as the one of matching probably density functions in testing and training. Our experimental results on both synthesized and real world data show promising results toward the goal of accurate and efficient pose classification of object categories from video sequences.
منابع مشابه
Incremental Unsupervised-Learning of Appearance Manifold with View-Dependent Covariance Matrix for Face Recognition from Video Sequences
We propose an appearance manifold with view-dependent covariance matrix for face recognition from video sequences in two learning frameworks: the supervised-learning and the incremental unsupervisedlearning. The advantages of this method are, first, the appearance manifold with view-dependent covariance matrix model is robust to pose changes and is also noise invariant, since the embedded covar...
متن کاملVideo Subject Inpainting: A Posture-Based Method
Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...
متن کاملUnsupervised Learning of Multiple Aspects of Moving Objects from Video
A popular framework for the interpretation of image sequences is based on the layered model; see e.g. Wang and Adelson [8], Irani et al. [2]. Jojic and Frey [3] provide a generative probabilistic model framework for this task. However, this layered models do not explicitly account for variation due to changes in the pose and self occlusion. In this paper we show that if the motion of the object...
متن کاملVideo Segmentation by Event Detection: A Novel One-Class Classification Approach
Segmenting videos into meaningful image sequences of some particular activities is an interesting problem in computer vision. In this paper, a novel algorithm is presented to achieve this semantic video segmentation. The goal is to make the system work unsupervised and generic in terms of application scenarios. The segmentation task is accomplished through event detection in a frameby-frame pro...
متن کاملAn unsupervised long short-term memory neural network for event detection in cell videos
We propose an automatic unsupervised cell event detection and classification method, which expands convolutional Long Short-Term Memory (LSTM) neural networks, for cellular events in cell video sequences. Cells in images that are captured from various biomedical applications usually have different shapes and motility, which pose difficulties for the automated event detection in cell videos. Cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009